automl_train.Rd
The multi deep neural network automatic train function (several deep neural networks are trained with automatic hyperparameters tuning, best model is kept)
This function launches the automl_train_manual function by passing it parameters
for each particle at each converging step
automl_train(Xref, Yref, autopar = list(), hpar = list(), mdlref = NULL)
Xref | inputs matrix or data.frame (containing numerical values only) |
---|---|
Yref | target matrix or data.frame (containing numerical values only) |
autopar | list of parameters for hyperparameters optimization, see autopar section |
hpar | list of parameters and hyperparameters for Deep Neural Network, see hpar section |
mdlref | model trained with automl_train to start training with saved hpar and autopar
(not the model) |
if (FALSE) { ##REGRESSION (predict Sepal.Length given other Iris parameters) data(iris) xmat <- cbind(iris[,2:4], as.numeric(iris$Species)) ymat <- iris[,1] amlmodel <- automl_train(Xref = xmat, Yref = ymat) } ##CLASSIFICATION (predict Species given other Iris parameters) data(iris) xmat = iris[,1:4] lab2pred <- levels(iris$Species) lghlab <- length(lab2pred) iris$Species <- as.numeric(iris$Species) ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE) ymat <- (ymat == as.numeric(iris$Species)) + 0 #with gradient descent and random hyperparameters sets amlmodel <- automl_train(Xref = xmat, Yref = ymat, autopar = list(numiterations = 1, psopartpopsize = 1, seed = 11), hpar = list(numiterations = 10))#> (cost: crossentropy) #> iteration 1 particle 1 weighted err: 2.08682 (train: 2.06276 cvalid: 2.00259 ) BEST MODEL KEPT