automl_train_manual.Rd
The base deep neural network train function (one deep neural network trained without automatic hyperparameters tuning)
automl_train_manual(Xref, Yref, hpar = list(), mdlref = NULL)
Xref | inputs matrix or data.frame (containing numerical values only) |
---|---|
Yref | target matrix or data.frame (containing numerical values only) |
hpar | list of parameters and hyperparameters for Deep Neural Network, see hpar section |
mdlref | model trained with automl_train or automl_train_manual to start training from a saved model (shape,
weights...) for fine tuning |
##REGRESSION (predict Sepal.Length given other Iris parameters) data(iris) xmat <- cbind(iris[,2:4], as.numeric(iris$Species)) ymat <- iris[,1] #with gradient descent amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat, hpar = list(learningrate = 0.01, numiterations = 30, minibatchsize = 2^2))#> (cost: mse) #> cost epoch10: 0.07483378655409 (cv cost: 0.466478285718589) (LR: 0.01 ) #> cost epoch20: 0.275546796158403 (cv cost: 0.294895895020273) (LR: 0.01 ) #> cost epoch30: 0.231827727788502 (cv cost: 0.233179461368555) (LR: 0.01 ) #> dim X: [4,135] #> dim W1: [10,4] (min|max: -1.54429770594677, 2.73130744979701) #> dim bB1: [10,1] (min|max: -0.317658298585351, 1.99139261324871) #> dim W2: [1,10] (min|max: -0.313978049365135, 0.286454921099375) #> dim bB2: [1,1] (min|max: 0.337210920487028, 0.337210920487028) #> dim Y: [1,135]if (FALSE) { #with PSO amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat, hpar = list(modexec = 'trainwpso', numiterations = 30, psopartpopsize = 50)) #with PSO and custom cost function f <- 'J=abs((y-yhat)/y)' f <- c(f, 'J=sum(J[!is.infinite(J)],na.rm=TRUE)') f <- c(f, 'J=(J/length(y))') f <- paste(f, collapse = ';') amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat, hpar = list(modexec = 'trainwpso', numiterations = 30, psopartpopsize = 50, costcustformul = f)) ##CLASSIFICATION (predict Species given other Iris parameters) data(iris) xmat = iris[,1:4] lab2pred <- levels(iris$Species) lghlab <- length(lab2pred) iris$Species <- as.numeric(iris$Species) ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE) ymat <- (ymat == as.numeric(iris$Species)) + 0 #with gradient descent and 2 hidden layers amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat, hpar = list(layersshape = c(10, 10, 0), layersacttype = c('tanh', 'relu', 'sigmoid'), layersdropoprob = c(0, 0, 0))) #with gradient descent and no hidden layer (logistic regression) amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat, hpar = list(layersshape = c(0), layersacttype = c('sigmoid'), layersdropoprob = c(0))) #with PSO and softmax amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat, hpar = list(modexec = 'trainwpso', layersshape = c(10, 0), layersacttype = c('relu', 'softmax'), layersdropoprob = c(0, 0), numiterations = 50, psopartpopsize = 50)) }